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INTRODUCTION 

This report provides a summary of empirical research that sought to explain the variability in 

costs across designated ATC zones in the domestic U.S.  Differences in costs can be 

attributed to a number of factors. These can be categorized into three general categories; 

structural, environmental and managerial. The structural factors would include the level and 

technology of capital equipment, external rules or requirements imposed on the particular 

ATC unit and combination of services offered by the ATC unit. We would include such 

things as externally designated salary scales, factor prices and the like in this category as 

well. Environmental factors refer for the most part to locational influences. An ATC unit in 

the middle of Kansas has different weather conditions to contend with than one located in 

Southern California. Other factors to consider would be geographic location in the US and 

the adjacency of other ATC units. If there were major hub airports located in your 

jurisdiction you would expect a different traffic pressure than if there were none. Similarly, 

hubs located in an adjacent ATC jurisdiction would have a spillover effect since it would 

generate more through movements. This category was a central focus of our efforts; that is, 

distinguishing own from adjacency (or externality) affects.  

 

The final category of factors would be those managerial decision variables that offer some 

discretion to the local ATC management team. In this group we would include quality or 

performance measures. It is certainly true that some failures (or successes) may be due to a 

failure to invest on the part of a central authority but it makes more sense to include them in 

this category since ultimately local management will be responsible and must provide a 

solution. There is also an issue of adjacency associated with performance. A failure, error or 

outage in one ATC unit can have downstream effects. Similarly, a decision rule, such as flow 

control, to slow aircraft down before they approach a congested area such as the northeast 

US, will be reflected in the local ATC units' performance. In our view it is important to 

understand the cost drivers not just explain costs, so management decisions can be made to 

improve efficiency as well as service quality. 
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This report can be considered as a ‘work-in-progress’ as the data sets are continually 

evolving. In section 1 we describe our approach to the problem. Organizing our efforts along 

the lines of cost, production and service quality models. Section 2 describes the model 

experiments we carried out looking at the use of dummy variables, defining output measures 

and service quality. In section 3 we describe the difference between productivity and 

efficiency and include a explanation of an alternative approach to measuring performance 

and productivity, namely TFP, Malmquist and Data Envelopment Analysis (DEA). The 

summary and conclusions are contained in section 4. 

 

MODELING ATC COST VARIATION: COST, PRODUCTION AND SERVICE 

QUALITY 

The materials provided by GRA prior to the August report can generally be classified as cost 

allocation/attribution exercises.  GRA was attempting to classify costs into different 

categories such as fixed versus variable and direct versus indirect and this was carried out 

across products or service categories such as Air Traffic Operations (ATO) and Air Facility 

Operations (AFO).  The best way to visualize this problem is in the form of either a two or 

three-dimensional matrix.  In the two-dimensional case one can think of cost categories such 

as direct labour, indirect labour, capital etc. along one dimension and products or services 

such as ATO and AFO along the other dimension.  GRA was attempting to fill in the boxes 

in the matrix. 

 

Cost Allocation 

 Labour Capital Materials 

ATO ? ? ? 

AFO ? ? ? 

 

If this matrix is viewed as three dimensional then along the third dimension there would be 

cost attributes such as fixed, variable, direct and indirect etc.  Simple regression analysis or 

bivariate regressions were used to determine which costs varied with which output or service.  
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Some of the cost items were accounting type costs where FAA overhead was allocated to 

different divisions. 

 

Our approach was to use economic theory as a guide to the extent possible.  Thus we started 

by classifying the data provided to us by GRA into the following categories.  We constructed 

adjacency variables to capture externality effects or interdependence between ATC centers. 

 

Our goal was to model costs as a function of output, size measures and characteristics: 

 

Output Measures Total operations 

Operations disaggregated into categories 

such as scheduled carrier, general aviation, 

air taxi, and military 

Number of over flights 

Size measures Employment or workers by category 

Total annual flight hours in SDP 

Total annual flight miles in SDP  

Square miles or area of SDP 

Characteristics Traffic density 

Number of units of specialized equipment 

such as radars and VORs 

Measures of delay and operating errors 

Hubs or gateways in SDP 

Adjacency Variables (External Effects) Number of adjacent SDPs 

Hubs or gateways in adjacent SDPs 

Delay and operating errors in adjacent SDPs 

 

Our methods included both single equation and systems models.  In other words we used 

ordinary least squares (OLS) and iterative three stage least squares (I3SLS).  I3SLS produces 

asymptotically efficient estimates and allows us to take care of endogeniety issues. For 

example one might specify a cost model, which includes the level of capital equipment and 

the number of errors (or outages) experienced by the ATC unit. However, the number of 

errors or outages could be related to the amount of capital investment. This second 

relationship needs to be specified separately to ensure we are able to distinguish the direct 

impacts of capital on cost differences and how it may influence the number of errors (or other 
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service quality measures) and the separate contribution of errors to cost variability across 

units. 

 

Regardless of the type of models we estimate we had a few choices to make at the beginning 

of the process.  The first issue was to determine if should estimate a cost function or a 

production function.  A general cost function for any time period n can be written as: 

 ( , , )C g y w t  (1) 

where C is total cost, y is a vector of outputs, w is a vector of input prices and t is a scalar 

measure of technical change.  Under certain restrictive conditions, a cost function is the dual 

of a production function.  In other words,  it is an equally fundamental representation of the 

production technology and all the information contained in the production function can also 

be extracted from the cost function.  The cost function is the preferred specification if outputs 

and factor prices are exogenous. A second reason for preferring cost functions is they reflect 

'optimizing' behaviour on the part of the firm or economic agent. Input prices are included so 

the trade-off between productivity and input prices is reflected in the cost function. 

 

A related issue is that of hedonic cost functions, which are generally used when there is, an 

output and various output characteristics or service attributes.  The following is a quality 

separable hedonic cost function: 

 ( ( ; ); , )C f Q y z w t  (2) 

here Q(.) is an aggregated output index that depends on output (y) and service attributes (z).  

It can be written as: 

 ( ) ( )Q y f z   (3) 

Clearly incorporating service attributes increases the number of parameters to be estimated 

even though we specify a quality separable output aggregator. 

 

At the very outset it was clear that we would not be able to estimate a ‘proper’ cost function 

using the data provided to us because we were missing input prices for the various factors of 

production.  Estimating a cost function requires data on outputs, output prices, inputs and 

input prices.  In addition it is best to have this information at a disaggregated level.  For 
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example labour data can usually be classified into different categories such as administrative 

and technical, or unionized and non-unionized.  If detailed data are available for each 

category in the form of hours worked, or person years or persons; this along with benefits 

loaded wage data allows us to construct a consistent aggregate of labour input using the 

following Törnqvist index: 

 
1

ln ln
211 1

s s LL m jt jt jtt

L Ljt jt

          
            

 (4) 

where sjt is the share in total compensation of labour category j at time t and Ljt is the quantity 

of labour input of type j at time t.  If there are zero observations in the labour data, let us say 

due to the addition of ‘new’ labour categories, then the Törnqvist index cannot be 

constructed since the natural logarithm of zero is not defined.  In this case one can use the 

Fisher Ideal index to aggregate labour input. The index can be constructed using the equation 

below where L

jtw  is the price of labour input of type j at time t : 

 

1
1 11 1
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2 2

1
1 1 1

1 1

n n
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jt jt jt jtL j jt

n nL L Lt w L w L
jt jt jt jt

j j

   
    

      
        
        

     
    

 (5) 

The data requirements for both measures are the same and both are superlative index 

numbers that provide for consistency in aggregation.  Loosely speaking, this means that the 

Fisher aggregate of many Fisher aggregates is approximately a Fisher aggregate and the 

Törnqvist aggregate of many Fisher aggregates is also approximately a Fisher aggregate 

index.  These are chain-linked weighted index numbers.  The weights allow us to capture 

changes in labour quality over time.  For example if over the years the number of technical 

workers has increased, this quality change in the composition of the workforce will be 

captured by the above index numbers.  The above examples are for time-series data, but it is 

also possible to calculate such measures across cross-sections using multilateral versions of 

these index numbers. 

 

The economic approach to calculating capital stocks or the quantity of capital input is to use 
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the perpetual inventory method as follows: 

 (1 )
1

K I K
it it i it

   


 (6) 

where Kit is the capital stock of type i in year t, Iit is gross real investment and i is the 

economic decay rate applicable to capital of type i.  The price of capital or the user cost of 

capital is calculated as follows: 

 
1 1

(1 ) (1 )

q q
u z it it

r
iu t q

p it i



    
        

              

 (7) 

In the above equation: 

 

u is the corporate income tax rate 

tP is the property tax rate and applicable to buildings and structures.  It is 

assumed that property taxes are deductible from income 

r is the marginal opportunity cost of capital 

i is the depreciation rate for capital type i 

qi is the price of new capital goods, or the investment price deflator for capital 

type i 

z is the present value of capital consumption allowance (CCA) deductions on a 

dollar's worth of investment 

 

Indices for materials, energy and other inputs would be constructed in a similar fashion. In 

some cases where detailed information is available on labour, capital and energy use, the 

residual is lumped together as 'other' inputs or materials. Because of the importance of 

contract services this is not an approach we would recommend here. Rather, contract services 

should be included as a separate factor input. 

 

In its present form, the GRA database does not allow for the implementation of most of the 

above models, so we started with something more modest.  For example, our estimated cost 

function does not include factor prices as explanatory variables. 

 

Prior to estimation, we had to choose the functional form, or the mathematical parametric 

form of the cost function.  Here again if the dataset permits, it is preferable to use flexible 

functional forms.  Flexible functional forms do not impose any a-priori restrictions on the 
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production technology and can provide a second order approximation to any arbitrary 

production technology.  There are many ways to think about the concept of flexibility, but 

the simplest, is to use a parameter count.  Typically researchers are interested in a number of 

economic effects.  The number of economic effects depends on the dimensionality of the 

model, or, the number of inputs and the number of outputs.  The following example is for the  

case where there is one output and N factor inputs.  The table below shows that if there is one 

output and two inputs, there are 6 distinct economic effects. 

 

Flexibility and Parameter Count 

Economic Effects Number of Parameters 

 N inputs N=2 

Cost level 1 1 

Returns to scale 1` 1 

Input Shares N-1 1 

Price elasticities of input demand N 2 

Elasticities of factor substitution N(N-1)/2 1 

Total (N+1)(N+2)/2 6 

 

Next consider the following Cobb-Douglas type cost function. 

 ln ln lnL KC w w      (8) 

The above cost function is not flexible as it contains three parameters whereas we are 

interested in six economic effects.  Thus it has less than the number of parameters required 

for flexibility.  The above cost function therefore imposes a priori restrictions on the 

production technology.  Since flexibility requires more parameters, and more parameters 

require more observations, flexible functional forms cannot be estimated using small 

datasets.  Examples of flexible functional forms include the Translog, Generalized Leontiev, 

Symmetric Generalized McFadden, and Symmetric Generalized Barnett.1  In our work we 

use simple Cobb-Douglas type cost functions. 

                                                 
1 Flexibility comes at a cost; often, flexible functional forms do not satisfy theoretical consistence requirements. 
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Since the data do not allow us to consider flexible functional forms, we had to choose 

between the simple linear and the log-linear form.  The former is sometimes referred to as a 

constant slope – varying elasticity model and the latter is referred to as a varying slope-

constant elasticity model.  These properties come from mathematics and not from economics.  

We prefer to use the log-linear version because the resulting parameters are the elasticity 

estimates and these have a simple yet useful intuitive interpretation.  Thus we have a ready 

answer to questions such as: What happens to costs if the number of flights increases by one 

percent? 

 

This choice may also be resolved using more defensible econometric methods and though we 

did not implement this; the appropriate way is to use the Box-Cox transformation of the 

regression model.  Using this approach both the linear and log-linear models are nested in the 

Box-Cox regression, so the choice of functional form is dictated by the outcome of the 

appropriate statistical test.  Suppose we were trying to choose between two commonly 

considered linear relationships: 

 1 2t t ty x      (9) 

 1 2ln lnt t ty x      (10) 

The Box-Cox transformation of a variable z is: 

 

( )

( )

1
0

1

ln 0

z
z

z z











 

 

 (11) 

The estimated value of λ determines the functional form.  If λ=0 then we have the log-linear 

form as the correct form and if λ=1 then as we see below, the correct from is linear: 
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   

 (12) 
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EMPIRICAL RESULTS OF MODEL SPECIFICATION 

Regardless of model specification, one of the issues we faced was the treatment of dummy 

variables.  Rather than including a dummy variable for Alaska, we excluded the Alaska 

observation from the dataset because it is an outlier in many respects.  There are three ways 

to incorporate dummy variables in regression models.  The first is to include shift dummies 

that affect the constant term in the regression; the second is to include interactive or slope 

dummies; and the third is to include both shift and interactive dummies.  The following three 

regressions provide an example.2 

 

Dependent variable 

All regressions l_tc  Natural logarithm (ln) of Total Cost 

 

Independent Variables 

Regression 1  l_flthrs  ln of Flight Hours 

   y2d  Year 2000 Dummy (1 in year 2000, 0 otherwise) 

   l12  Level 12 Dummy (1 for level 12, 0 otherwise) 

 

Regression 2  l_flthrs  ln of Flight Hours 

   flt2  Year 2000 Dummy * ln of Flight Hours 

   flt12  Level 12 Dummy * ln of Flight Hours 

 

Regression 3  l_flthrs  ln of Flight Hours 

   flt2  Year 2000 Dummy * ln of Flight Hours 

   flt12  Level 12 Dummy * ln of Flight Hours 

   y2d  Year 2000 Dummy 

   l12  Level 12 Dummy 

 

The results are shown on the next page and as is evident, it is difficult to choose between 

regressions 1 and 2.  If both shift and interactive dummies are included as in regression 3, 

                                                 
2 Note that ideally total cost data should be corrected for inflation. 
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they are all statistically insignificant.  Interactive dummies generally provide richer 

information.  For example from regression 2 we can calculate the percentage change in total 

cost due to a 1% increase in total flight hours and due to the use of interactive dummies, this 

measure varies both across years and levels. 

 

Output cost elasticity of flight hours Year and Level 

0.370 1999 and all levels other than 12 

0.378 1999 and level 12 

0.376 2000 and all levels other than 12 

0.384 2000 and level 12 

 

The differences though small in magnitude, are statistically significant.  In comparison using 

shift dummies only (as in regression 1) provides one value (0.376) of the output cost 

elasticity of flight hours.  In what we report later we only use shift dummies primarily 

because using interactive dummies leads to identification problems in our simultaneous 

equation model.  In the single equation context, we would not rely on shift dummies alone. 

 

An important issue we had to deal with was choosing between different output measures.  

Our results show that one has to choose an appropriate measure of output from the following 

three alternatives: 

 

1. Total operations (defined as over flights + (departures*2)) 

2. Total Flight Hours 

3. Two outputs – departures and over flights 

 

Using permutations and combinations of the above three alternatives either produces 

estimates that are not statistically significant or estimates that are biased, or have the wrong 

signs.  The results of the three alternatives are shown above in regressions 4 through 6.  All 

three regressions are log-linear and total cost is the independent variable. 
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Interactive vs. Shift Dummy Variables 

Regression 1:  ols l_tc l_flthrs y2d l12 
 

 R-SQUARE =   0.6942     R-SQUARE ADJUSTED =   0.6687 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.74203E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.86141E-01 

SUM OF SQUARED ERRORS-SSE=  0.26713 

MEAN OF DEPENDENT VARIABLE =   18.462 

LOG OF THE LIKELIHOOD FUNCTION =  43.4205 

 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR      36 DF   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_FLTHRS  0.37630     0.7626E-01   4.935     0.000 0.635     0.5300     0.2836 

Y2D       0.76402E-01 0.2776E-01   2.752     0.009 0.417     0.2585     0.0021 

L12       0.10504     0.3194E-01   3.289     0.002 0.481     0.3482     0.0023 

CONSTANT   13.146      1.052       12.49     0.000 0.901     0.0000     0.7121 

 

Regression 2:  ols l_tc l_flthrs flt2 flt12 
 

 R-SQUARE =   0.6945     R-SQUARE ADJUSTED =   0.6690 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.74146E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.86108E-01 

SUM OF SQUARED ERRORS-SSE=  0.26692 

MEAN OF DEPENDENT VARIABLE =   18.462 

LOG OF THE LIKELIHOOD FUNCTION =  43.4358 

 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR      36 DF   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_FLTHRS  0.37065     0.7683E-01   4.824     0.000 0.627     0.5221     0.2793 

FLT2      0.54899E-02 0.1994E-02   2.753     0.009 0.417     0.2591     0.0021 

FLT12     0.75344E-02 0.2286E-02   3.296     0.002 0.481     0.3507     0.0023 

CONSTANT   13.224      1.060       12.48     0.000 0.901     0.0000     0.7163 

 

Regression 3:  ols l_tc l_flthrs flt2 flt12 y2d l12 
 

 R-SQUARE =   0.6954     R-SQUARE ADJUSTED =   0.6506 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.78260E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.88465E-01 

SUM OF SQUARED ERRORS-SSE=  0.26608 

MEAN OF DEPENDENT VARIABLE =   18.462 

LOG OF THE LIKELIHOOD FUNCTION =  43.4989 

 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR      34 DF   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_FLTHRS  0.36088     0.1162       3.106     0.004 0.470     0.5083     0.2720 

FLT2     -0.10743E-01 0.1372     -0.7829E-01 0.938-0.013    -0.5071    -0.0041 

FLT12     0.58679E-01 0.1614      0.3635     0.718 0.062     2.7309     0.0178 

Y2D       0.22590      1.909      0.1183     0.907 0.020     0.7643     0.0061 

L12      -0.71444      2.255     -0.3169     0.753-0.054    -2.3683    -0.0155 

CONSTANT   13.359      1.607       8.313     0.000 0.819     0.0000     0.7236 
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Choice of Output Variable 

REGRESSION 4: OLS L_TC L_OPS Y2D L12 

 

 R-SQUARE =   0.6396     R-SQUARE ADJUSTED =   0.6095 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.87467E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.93524E-01 

SUM OF SQUARED ERRORS-SSE=  0.31488 

MEAN OF DEPENDENT VARIABLE =   18.462 

LOG OF THE LIKELIHOOD FUNCTION =  40.1312 

 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR      36 DF   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_OPS     0.39192     0.1005       3.899     0.000 0.545     0.6082     0.3093 

Y2D       0.90904E-01 0.2973E-01   3.057     0.004 0.454     0.3076     0.0025 

L12       0.42332E-01 0.4696E-01  0.9014     0.373 0.149     0.1403     0.0009 

CONSTANT   12.690      1.449       8.759     0.000 0.825     0.0000     0.6874 

 

REGRESSION 5: OLS L_TC L_FLTHRS Y2D L12 

 

 R-SQUARE =   0.6942     R-SQUARE ADJUSTED =   0.6687 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.74203E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.86141E-01 

SUM OF SQUARED ERRORS-SSE=  0.26713 

MEAN OF DEPENDENT VARIABLE =   18.462 

LOG OF THE LIKELIHOOD FUNCTION =  43.4205 

 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR      36 DF   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_FLTHRS  0.37630     0.7626E-01   4.935     0.000 0.635     0.5300     0.2836 

Y2D       0.76402E-01 0.2776E-01   2.752     0.009 0.417     0.2585     0.0021 

L12       0.10504     0.3194E-01   3.289     0.002 0.481     0.3482     0.0023 

CONSTANT   13.146      1.052       12.49     0.000 0.901     0.0000     0.7121 

 

REGRESSION 6: OLS L_TC L_OVR L_DEP Y2D L12 

 

 R-SQUARE =   0.6781     R-SQUARE ADJUSTED =   0.6413 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.80341E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.89633E-01 

SUM OF SQUARED ERRORS-SSE=  0.28119 

MEAN OF DEPENDENT VARIABLE =   18.462 

LOG OF THE LIKELIHOOD FUNCTION =  42.3944 

 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR      35 DF   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_OVR     0.71670E-01 0.2560E-01   2.800     0.008 0.428     0.3582     0.0505 

L_DEP     0.29358     0.6607E-01   4.443     0.000 0.601     0.5356     0.2158 

Y2D       0.93190E-01 0.2844E-01   3.276     0.002 0.484     0.3153     0.0025 

L12       0.45684E-01 0.4376E-01   1.044     0.304 0.174     0.1514     0.0010 

CONSTANT   13.481      1.068       12.62     0.000 0.905     0.0000     0.7302 
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We have no defensible method of choosing one measure of output over another. One might 

use non-nested statistical tests but there should be some underlying model or at least 

intuition. It may also be that for some purposes one measure provides a better indicator for 

the underlying drivers. Finally, we could argue this provides a motivation for moving to 

multivariate statistical techniques in which multiple outputs can be considered 

simultaneously. In an ideal framework perhaps the use of hedonics to model output 

characteristics would take care of this problem.  However we offer all three as workable 

alternatives.  We continue to work with the flight hours model because in our view this 

represents a reasonable measure of en-route output. 

 

In the interim, we retain flight hours as a measure of output and consider systems estimation.  

Regressions 7 through 9 are single equation estimates whereas regressions 10 through 12 are 

iterative three stage least squares results (I3SLS).  The variables are explained below: 

 

Regressions 7 (and 10) – Cost Function 

Dependent variable is  l_tc or ln of Total Cost 

Independent Variables 

l_flthrs  ln of Flight Hours 

l_mdel  ln of Total minutes of delay of all flights 

y2d  Year 2000 Dummy (1 in year 2000, 0 otherwise) 

l12  Level 12 Dummy (1 for level 12, 0 otherwise) 

 

Regressions 8 (and 11) – Production Function 

Dependent variable is  l_flthrs or ln of Flight Hours 

Independent Variables 

L  ln Labour input (ATCS_ADJ) 

K2  ln of Capital input (Equipment count or NAPRS) 
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Single Equation Models – Total Cost 

 

Regression 7: ols l_tc  l_flthrs  l_mdel  y2d  l12 
 

R-SQUARE =   0.7641     R-SQUARE ADJUSTED =   0.7371 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.58889E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.76739E-01 

SUM OF SQUARED ERRORS-SSE=  0.20611 

MEAN OF DEPENDENT VARIABLE =   18.462 

LOG OF THE LIKELIHOOD FUNCTION =  48.6069 

 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR      35 DF   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_FLTHRS  0.35770     0.6818E-01   5.246     0.000 0.663     0.5038     0.2696 

L_MDEL    0.30714E-01 0.9542E-02   3.219     0.003 0.478     0.2842     0.0215 

Y2D       0.74660E-01 0.2474E-01   3.018     0.005 0.454     0.2526     0.0020 

L12       0.78247E-01 0.2964E-01   2.640     0.012 0.407     0.2594     0.0017 

CONSTANT   13.019     0.9383       13.88     0.000 0.920     0.0000     0.7052 

 

Regression 8: ols l_flthrs L  K2 
 

R-SQUARE =   0.7906     R-SQUARE ADJUSTED =   0.7793 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.98090E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.99040E-01 

SUM OF SQUARED ERRORS-SSE=  0.36293 

MEAN OF DEPENDENT VARIABLE =   13.914 

LOG OF THE LIKELIHOOD FUNCTION =  37.2908 

 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR      37 DF   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L         0.78332     0.6753E-01   11.60     0.000 0.886     0.8785     0.3219 

K2        0.58879E-01 0.6392E-01  0.9212     0.363 0.150     0.0698     0.0237 

CONSTANT   9.1043     0.4962       18.35     0.000 0.949     0.0000     0.6543 

 

Regression 9: ols l_mdel  l_hub  l_err 
 

R-SQUARE =   0.4538     R-SQUARE ADJUSTED =   0.4243 

VARIANCE OF THE ESTIMATE-SIGMA**2 =   1.1041 

STANDARD ERROR OF THE ESTIMATE-SIGMA =   1.0508 

SUM OF SQUARED ERRORS-SSE=   40.853 

MEAN OF DEPENDENT VARIABLE =   12.938 

LOG OF THE LIKELIHOOD FUNCTION = -57.1795 

 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR      37 DF   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_HUB      1.4516     0.3763       3.858     0.000 0.536     0.5036     0.1989 

L_ERR     0.59457     0.2590       2.295     0.027 0.353     0.2996     0.1477 

CONSTANT   8.4536     0.8716       9.699     0.000 0.847     0.0000     0.6534 
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I3SLS – Simultaneous Equation Models – Total Cost, Production and Delay Functions 

 

SYSTEM R-SQUARE =  0.9539 ... CHI-SQUARE =   123.08     WITH   8 D.F. 

Regression 10: ols l_tc  l_flthrs  l_mdel  y2d  l12 
 

R-SQUARE =   0.6624 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.73735E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.85869E-01 

SUM OF SQUARED ERRORS-SSE=  0.29494 

MEAN OF DEPENDENT VARIABLE =   18.462 

 

                             ASYMPTOTIC 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR   --------   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_FLTHRS  0.57845     0.7395E-01   7.823     0.000 0.798     0.8148     0.4360 

L_MDEL    0.22803E-01 0.1044E-01   2.183     0.029 0.346     0.2110     0.0160 

Y2D       0.10518     0.1791E-01   5.872     0.000 0.704     0.3558     0.0028 

L12       0.18286E-01 0.2384E-01  0.7669     0.443 0.129     0.0606     0.0004 

CONSTANT   10.059     0.9985       10.07     0.000 0.862     0.0000     0.5448 

 

Regression 11: ols l_flthrs L  K2 
 

R-SQUARE =   0.7881 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.91833E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.95830E-01 

SUM OF SQUARED ERRORS-SSE=  0.36733 

MEAN OF DEPENDENT VARIABLE =   13.914 

 

                             ASYMPTOTIC 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR   --------   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L         0.76430     0.6415E-01   11.91     0.000 0.891     0.8571     0.3141 

K2        0.99516E-01 0.4418E-01   2.253     0.024 0.347     0.1179     0.0401 

CONSTANT   8.9851     0.4188       21.46     0.000 0.962     0.0000     0.6458 

 

 

Regression 12: ols l_mdel  l_hub  l_err 
 

R-SQUARE =   0.4509 

VARIANCE OF THE ESTIMATE-SIGMA**2 =   1.0267 

STANDARD ERROR OF THE ESTIMATE-SIGMA =   1.0133 

SUM OF SQUARED ERRORS-SSE=   41.069 

MEAN OF DEPENDENT VARIABLE =   12.938 

 

                             ASYMPTOTIC 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR   --------   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_HUB      1.5092     0.3458       4.364     0.000 0.583     0.5236     0.2068 

L_ERR     0.68016     0.2431       2.797     0.005 0.418     0.3428     0.1690 

CONSTANT   8.0763     0.8254       9.784     0.000 0.849     0.0000     0.6242 
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Regressions 9 (and 12) – Delay Function 

Dependent variable is  ln of Total minutes of delay of all flights  

Independent Variables 

L_hub  ln of Total number of hubs in SDP 

L_err  ln of Operational errors  

 

We also estimated specifications of the cost function that included the ln of the total number 

of adjacent zones and the ln of the ratio of actual route nautical miles to greater circle 

distance (ACTNM/GCR).  Though both variables have a positive impact on total costs the 

estimates are not statistically significant. 

 

In principle we should not be estimating both a cost and a production function as a system 

since one is the dual of the other and we only need estimate one or the other since all the 

information contained in one is also in the other.  Clearly, the approach used is not 

theoretically defensible, however given the data constraints, in this case our interpretation of 

the equations is different.  The single equation estimates (regressions 7 through 9) treat all 

independent variables as exogenous whereas in the simultaneous equation model we are 

essentially treating the output variable (flight hours) and the delay variable as endogenous.  

Indeed, the theoretical inconsistency of our approach can be demonstrated by examining 

returns to scale.  Using the cost function, the scale elasticity is the inverse of the output cost 

elasticity, or 1.728 (Regression 10) indicating very large increasing returns to scale, if the 

cost function is interpreted as a long run cost function. If it is interpreted as a short run cost 

function it indicates significant cost economies with capacity use or sizable density 

economies.  The production function however indicates returns to scale are 0.864 (regression 

11) that is; there are decreasing returns to scale.  We would tend to consider the latter 

estimate more reliable because at least our production function is theoretically correct (output 

is a function of factor inputs) even though it is simple and may not capture the complexity of 

the production technology.  The cost function on the other hand does not include prices of 

factors of production.  The correct measure of returns to scale would use the output cost 
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elasticity assuming factor prices are constant – in this case our estimate does not control for 

factor prices. 

 

Nonetheless our models, though parsimonious in parameters have the correct signs.  So for 

example, a higher number of hubs and higher operational errors lead to more minutes of 

delay, which in turn increase total costs.  Similarly, using more capital and labour enable 

producing more flight hours, which in turn lead to higher costs.  Note however that the 

coefficient of capital in regression 8 is not significant but it becomes significant in regression 

11 where we use I3SLS estimation. 

 

Next, we specifically estimate a variable cost function and, a production function and a delay 

function, both of which are specified exactly as before.  Before proceeding to discuss the 

results we discuss the theoretical framework.  The choice between estimating a variable (or 

short-run) cost function and a total (or long-run) cost function is dictated by fixity of factors 

of production.  If some factors of production are quasi-fixed in the short run then the variable 

cost function is the appropriate specification; alternatively if firms can adjust on all margins 

then the appropriate specification is the long run cost function.  Properties of both can be 

examined if the focus is on whether or not there is excess capacity and on capacity utilization 

issues.  Further, dynamic models can be estimated if one is interested in adjustment costs.  

However, the first step in the process is to derive variable costs from data on prices and 

quantities of factors of production, as follows: 

 
L K

K L

C w L w K

VC C w K w L

   

    
 (13) 

We assume for simplicity that there are only two factors of production; capital and labour, 

thus variable costs are identical to the wage bill.  This is the procedure for deriving the value 

of the independent variable (variable cost) in the variable cost function regression.  Here of 

course we are assuming that the user cost of capital and the capital stocks (quantities) have 

been constructed as described earlier.  A general variable cost function for any time period n 

can be written as: 

 ( , , , )VC h y w K t  (14) 
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where VC is variable cost, y is a vector of outputs, w  is a vector of prices of variable factors 

of production, K  is a scalar or vector representing one or more quasi-fixed factors of 

production and t is a scalar measure of technical change.  Of course we cannot implement 

this because of data constraints and so the values of variable cost we use are those provided 

by GRA, which we assume have been derived using accounting type cost allocation 

constructs.  In such applications one may wish to distinguish between direct and indirect 

variable costs.  From an economic theory perspective we cannot make such distinctions – 

costs are either fixed or variable and indeed though it is easier to identify with capital as 

being a fixed factor of production, unionized labour can also be treated as quasi-fixed if the 

collective bargaining agreement prevents a firm from adjusting the labour force in response 

to changes in demand. 

 

In estimating the variable cost model we encountered issues similar to those in estimating the 

total cost model.  Again, for example, dummy variables can be either interactive or shift 

dummies.  Further, it is possible to use various definitions of output – operations, flight hours 

etc.  Some alternatives are shown below.  Regression 13 uses the ln of disaggregated flight 

operations, which include Air Taxi and Commuter (L_TOPS); Air Carrier Flights (L_COPS); 

general Aviation (L_GOPS) and Military (L_MOPS).  In addition, the dummy for level 11 is 

significant in all variable cost function regressions.  We also experimented with including 

measures of density, hubs, size, delay, errors etc. in this equation but these were not 

significant.  Regression 14 is similar to the total cost regression in that it only uses flight 

hours as an output; the difference lies in using a measure of density instead of delay as an 

additional explanatory variable.  The density measure (L_DEN) is the ln of departures per 

square mile.  The density measure is an alternative to the delay measure we used earlier.  

Regression 15 is the same model we used for total costs.  Again, we have no particular 

preference for a particular model.  We retain two models for further investigation. 
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Single Equation Models – Variable Cost Function and Choice of Output Variable 

Regression 13: ols l_vc l_tops l_cops l_gops l_mops  y2d  l12  l11 

 R-SQUARE =   0.8829     R-SQUARE ADJUSTED =   0.8573 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.70736E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.84105E-01 

SUM OF SQUARED ERRORS-SSE=  0.22636 

MEAN OF DEPENDENT VARIABLE =   17.820 

LOG OF THE LIKELIHOOD FUNCTION =  46.7330 

 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR      32 DF   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_TOPS    0.27282     0.7456E-01   3.659     0.001 0.543     0.3359     0.2133 

L_COPS    0.14199     0.3391E-01   4.188     0.000 0.595     0.3051     0.1016 

L_GOPS    0.15153     0.5788E-01   2.618     0.013 0.420     0.2556     0.1097 

L_MOPS    0.39853E-01 0.2528E-01   1.577     0.125 0.268     0.1006     0.0270 

Y2D       0.97080E-01 0.2682E-01   3.620     0.001 0.539     0.2208     0.0027 

L12       0.17089     0.6125E-01   2.790     0.009 0.442     0.3809     0.0038 

L11       0.10216     0.4679E-01   2.184     0.036 0.360     0.2277     0.0023 

CONSTANT   9.6148      1.253       7.675     0.000 0.805     0.0000     0.5395 

Regression 14: ols l_vc  l_flthrs  y2d  l12  l11  l_den 

 R-SQUARE =   0.9103     R-SQUARE ADJUSTED =   0.8971 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.50985E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.71404E-01 

SUM OF SQUARED ERRORS-SSE=  0.17335 

MEAN OF DEPENDENT VARIABLE =   17.820 

LOG OF THE LIKELIHOOD FUNCTION =  52.0689 

 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR      34 DF   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_FLTHRS  0.56380     0.6641E-01   8.490     0.000 0.824     0.5339     0.4402 

Y2D       0.70122E-01 0.2306E-01   3.041     0.005 0.462     0.1595     0.0020 

L12       0.19533     0.5530E-01   3.532     0.001 0.518     0.4353     0.0044 

L11       0.69490E-01 0.3939E-01   1.764     0.087 0.290     0.1549     0.0016 

L_DEN     0.68941E-01 0.3001E-01   2.297     0.028 0.367     0.1981     0.0059 

CONSTANT   9.7291     0.9102       10.69     0.000 0.878     0.0000     0.5460 

Regression 15: ols l_vc  l_flthrs  y2d  l12  l11  l_mdel 

 R-SQUARE =   0.9204     R-SQUARE ADJUSTED =   0.9087 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.45257E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.67274E-01 

SUM OF SQUARED ERRORS-SSE=  0.15387 

MEAN OF DEPENDENT VARIABLE =   17.820 

LOG OF THE LIKELIHOOD FUNCTION =  54.4524 

 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR      34 DF   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_FLTHRS  0.57369     0.6264E-01   9.159     0.000 0.844     0.5432     0.4479 

Y2D       0.67681E-01 0.2175E-01   3.111     0.004 0.471     0.1539     0.0019 

L12       0.22925     0.3965E-01   5.782     0.000 0.704     0.5109     0.0051 

L11       0.76832E-01 0.3353E-01   2.292     0.028 0.366     0.1712     0.0017 

L_MDEL    0.29339E-01 0.9164E-02   3.201     0.003 0.481     0.1825     0.0213 

CONSTANT   9.3020     0.8699       10.69     0.000 0.878     0.0000     0.5220 
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I3SLS – Simultaneous Equation Models – Variable Cost and Production Function (with 

density measure) 

 

SYSTEM R-SQUARE =  0.9725 ... CHI-SQUARE =   143.72     WITH   7 D.F. 

 

Regression 16: ols l_vc l_flthrs y2d l12 l11 l_den 

R-SQUARE =   0.8687 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.63442E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.79650E-01 

SUM OF SQUARED ERRORS-SSE=  0.25377 

MEAN OF DEPENDENT VARIABLE =   17.820 

 

                             ASYMPTOTIC 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR   --------   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_FLTHRS  0.76008     0.6736E-01   11.28     0.000 0.888     0.7197     0.5935 

L_DEN     0.73213E-01 0.2063E-01   3.549     0.000 0.520     0.2104     0.0063 

Y2D       0.10391     0.1434E-01   7.247     0.000 0.779     0.2364     0.0029 

L11       0.70736E-01 0.2395E-01   2.953     0.003 0.452     0.1576     0.0016 

L12       0.12507     0.3418E-01   3.659     0.000 0.532     0.2787     0.0028 

CONSTANT   7.0021     0.9271       7.552     0.000 0.792     0.0000     0.3929 

 

Regression 17: ols l_flthrs L  K2 

 

R-SQUARE =   0.7878 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.91947E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.95889E-01 

SUM OF SQUARED ERRORS-SSE=  0.36779 

MEAN OF DEPENDENT VARIABLE =   13.914 

 

                             ASYMPTOTIC 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR   --------   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L         0.78508     0.6536E-01   12.01     0.000 0.892     0.8804     0.3227 

K2        0.10333     0.4538E-01   2.277     0.023 0.351     0.1224     0.0417 

CONSTANT   8.8449     0.4129       21.42     0.000 0.962     0.0000     0.6357 
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I3SLS – Simultaneous Equation Models – Variable Cost, Production and Delay 

Functions 

 

SYSTEM R-SQUARE =  0.9813 ... CHI-SQUARE =   159.12     WITH   9 D.F. 

 

Regression 18: ols l_vc l_flthrs y2d l12 l11 l_mdel 

R-SQUARE =   0.8193 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.87303E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.93436E-01 

SUM OF SQUARED ERRORS-SSE=  0.34921 

MEAN OF DEPENDENT VARIABLE =   17.820 

 

                             ASYMPTOTIC 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR   --------   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_FLTHRS  0.89538     0.7316E-01   12.24     0.000 0.903     0.8479     0.6991 

L_MDEL    0.13261E-01 0.8886E-02   1.492     0.136 0.248     0.0825     0.0096 

Y2D       0.10369     0.1327E-01   7.812     0.000 0.801     0.2358     0.0029 

L11       0.83250E-01 0.2282E-01   3.647     0.000 0.530     0.1855     0.0019 

L12       0.13762     0.3085E-01   4.461     0.000 0.608     0.3067     0.0031 

CONSTANT   5.0500      1.007       5.015     0.000 0.652     0.0000     0.2834 

 

Regression 19: ols l_flthrs  L  K2 

 

R-SQUARE =   0.7856 

VARIANCE OF THE ESTIMATE-SIGMA**2 =  0.92900E-02 

STANDARD ERROR OF THE ESTIMATE-SIGMA =  0.96385E-01 

SUM OF SQUARED ERRORS-SSE=  0.37160 

MEAN OF DEPENDENT VARIABLE =   13.914 

 

                             ASYMPTOTIC 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR   --------   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L         0.77808     0.6452E-01   12.06     0.000 0.893     0.8726     0.3198 

K2       -0.39960E-04 0.3336E-01 -0.1198E-02 0.999 0.000     0.0000     0.0000 

CONSTANT   9.4647     0.3954       23.94     0.000 0.969     0.0000     0.6802 

 

Regression 20: ols l_mdel  l_hub  l_err 

R-SQUARE =   0.4531 

VARIANCE OF THE ESTIMATE-SIGMA**2 =   1.0225 

STANDARD ERROR OF THE ESTIMATE-SIGMA =   1.0112 

SUM OF SQUARED ERRORS-SSE=   40.901 

MEAN OF DEPENDENT VARIABLE =   12.938 

 

                             ASYMPTOTIC 

VARIABLE   ESTIMATED  STANDARD   T-RATIO        PARTIAL STANDARDIZED ELASTICITY 

  NAME    COEFFICIENT   ERROR   --------   P-VALUE CORR. COEFFICIENT  AT MEANS 

 

L_HUB      1.4426     0.3419       4.219     0.000 0.570     0.5005     0.1976 

L_ERR     0.64667     0.2392       2.703     0.007 0.406     0.3259     0.1607 

CONSTANT   8.3022     0.8218       10.10     0.000 0.857     0.0000     0.6417 
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For the I3SLS estimation we have two alternative specifications.  The first has two equations, 

which include Regression 14 and a production function.  The second has three equations, 

which include Regression 15, a production function and a delay function.  These results are 

shown above in Regressions 16 through 20.  We should note though that in our two-equation 

model that uses density (regressions 16 and 17) the coefficient of capital in equation 17 has 

the correct sign and is statistically significant.  In the three-equation model, which uses delay 

(regressions 18 through 20) the coefficient of capital in equation 19 has the wrong sign and is 

not statistically significant. 

 

The value of variable cost, or, the observations for the dependent variable in the above 

regression equations is a ‘constructed’ variable from cost allocation and bivariate regression 

analysis conducted by GRA.  We therefore prefer to work further with the total cost model.  

We also do not pursue the systems models further and we restrict our specification to log-

linear models.  In the following table we provide results for three models that we consider 

promising.  All three models have some common variables.  These include the two shift 

dummies for the year 2000 and for level 12.  In all models these variables have positive and 

statistically significant coefficients.  The two other variables that are common to all three 

models are average miles flown per operation and average hours per operation.  The former 

has a negative sign in all three models and the latter has a positive sign.  Both variables are 

significant in all three models.  Thus all three models indicate that it is cheaper to control 

longer distance flights and costs increase as more hours are flown in an SDP.  Indeed, in the 

first model this may be capturing the effect of speed.  Holding total miles flown and average 

miles per operation constant, average hours may increase due to slower speed, which 

increases costs. 

 

All externality effects increase costs.  In model 1, equipment downtime in adjacent centers 

and in models 2 and 3 the number of adjacent zones create negative externality effects since 

they result in higher costs.  Model 2 excludes total miles flown and instead includes the 

number of domestic sectors.  The latter also has a positive impact on costs. 
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SOME PROMISING SINGLE EQUATION MODELS 

Dependent Variable:  Total SDP Cost 

40 observations (excluding Alaska) - Log-Linear Regression 

 

Model 1:  Adjusted R-square: 0.7405 Coefficient T-stat 

Total miles flown by all aircraft 0.243 2.41 

Average miles per operation -0.267 -2.53 

Average hours per operation 0.444 3.18 

Total minutes of delay for all flights 0.042 3.66 

Total amount of equipment downtime in adjacent centers 0.029 1.67 

Year 2000 Dummy 0.091 3.23 

Level 12 Dummy 0.108 2.58 

Constant 14.573 9.10 

 

Model 2:  Adjusted R-square: 0.7971 Coefficient T-stat 

Average miles per operation -0.132 -1.91 

Average hours per operation 0.381 2.99 

Total minutes of delay for all flights 0.032 3.01 

Number of Domestic Sectors 0.334 3.48 

Total number of adjacent centers 0.044 1.41 

Year 2000 Dummy 0.076 3.29 

Level 12 Dummy 0.105 3.23 

Constant 17.632 35.04 

 

Model 3:  Adjusted R-square: 0.6913 Coefficient T-stat 

 Total miles flown by all aircraft 0.377 3.37 

Average miles per operation -0.346 -3.10 

Average hours per operation 0.388 2.59 

Share of over flights in total operations -0.080 -2.49 

Total number of adjacent centers 0.075 1.59 

Year 2000 Dummy 0.081 2.87 

Level 12 Dummy 0.129 2.65 

Constant 12.742 6.79 
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Model 3 excludes the number of domestic sectors but includes both total miles flown and the 

proportion of over flights in total operations.  A higher share of over flights reduces costs.  

Given that total miles flown, average miles per operation and average hours per operation are 

constant, this is likely capturing the impact of the pure replacement effect – replacing over 

flights with arrivals and departures reduces costs. 

 

PRODUCTIVITY, EFFICIENCY AND DEA 

 

Productivity and efficiency are often interpreted as being as being synonymous.  Though the 

concepts are related, in general, productivity is a broader concept than efficiency.  Both 

concepts can be related to a production function, which is the primitive (in the single output 

case) representing the transformation of inputs to output.3  From a conceptual viewpoint, 

productivity and efficiency measurement can be classified into the frontier and non-frontier 

approaches and from an implementation viewpoint, into parametric and non-parametric.  

These are discussed below. 

 

Consider the simple case of one output, one fixed factor of production – capital and one 

variable factor of production – labour.  A measure of partial productivity could be labour 

productivity, which is output per unit of labour input, or, the average product of labour.  An 

increase in the average product of labour would represent an increase in productivity 

however, as discussed below, this could come from a variety of sources. 

 

Figure 1 illustrates a production function F(.); output is measured on the vertical axis and 

input on the horizontal axis.  Consider a firm operating at the point A.  This firm is operating 

at a point below the production function.  Its productivity is the slope of the ray through the 

origin OA.  Some researchers interpret the production function as a frontier, which represents 

the best practice.4  Though all firms may have access to the same technology, some may be 

                                                 
3 In the case of multiple outputs the primitive is a Transformation Function 
4 The frontier is generally assumed to a stochastic frontier and in the production context the frontier can only 

move in one direction, which is up.  This is due to improvements in best practice or technical progress. 
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better at using the technology than others.  Firms that operate on the production function are 

obviously more efficient than those that do not.  Thus, a firm operating at the point B is more 

efficient than one operating at point A.  Moving from A to B increases productivity, but this 

increase is coming from catch-up or reducing technical inefficiency.  Similarly, there could 

be another firm operating at point C.  This firm is technically efficient, just like firm B, but it 

is utilizing the optimal scale of production and therefore has higher productivity than B.  The 

source of higher productivity in this case is economies of scale.  Thus Figure 1 shows that 

productivity improvements can come from different sources. 

 

Now consider the addition of another production function to Figure 1.  The new production 

function, F’(.), lies above the old one.  This represents innovation, technical change or 

technical progress.  The production function is also sometimes interpreted as a stochastic 

frontier, which moves out over time due to advances in technology.  Thus, firm B could 

move to a new position D; doing so will increase productivity, but the source of the 

productivity improvement is not a reduction in technical inefficiency or as a result of 

exploiting scale economies, but due to technical change or innovation.  Conventional or non-

frontier approaches to productivity measurement, such as labour productivity or total factor 
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productivity (TFP) ignore technical efficiency.  Implicitly these measures assume either that 

all firms are on the frontier or that their distance from the frontier does not change over time. 

 

From an implementation viewpoint, methods of measuring efficiency can be broadly 

classified into non-parametric and parametric.  Non-parametric methods include indexes of 

partial and total factor productivity, and data envelopment analysis.  The latter is essentially a 

linear programming based method.  Parametric methods involve the estimation of neo-

classical and stochastic cost or production functions. 

 

The data requirements for the various methods differ, as do their ability to inform managerial 

decisions.  The use of partial productivity measures is pervasive and though these measures 

are easy to understand and compute, they can be quite misleading, because they do not reflect 

differences in factor prices and do they take account of differences in productivity of the 

other factor inputs used in production.  Partial productivity measures are also unable to 

handle multiple outputs.  Multiple outputs have to be aggregated into a single measure and 

often this is difficult to do if the output has service or quality characteristics or attributes. 

 

One alternative to partial productivity measures is to use a more complete multi-factor 

measure such as a Törnqvist index of total factor productivity (TFP).  This measure does not 

suffer from the shortcomings of partial productivity measure, but taken alone it is not very 

informative for evaluating management strategies.  Extracting more information from 

measures of total factor productivity typically requires estimation of parametric neo-classical 

cost or production functions.  In addition to data on physical inputs and outputs, this 

approach also requires information on prices, which is used to aggregate inputs and outputs. 

 

Data Envelopment Analysis 

Data Envelopment Analysis (DEA) is a frontier method and an alternative that has found 

favor in applications where the behavioural objective of the firm or decision-making unit 

under study is neither minimization of costs, nor maximization of profit; or where outputs are 
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not easily or clearly defined. For example, DEA has been used in measuring efficiency of 

schools, hospitals and government institutions.  It is also useful in determining the efficiency 

of firms that consume or produce inputs or outputs, which lack natural prices.  DEA is a 

linear programming based technique and the basic model only requires information on inputs 

and outputs, though if prices are available then DEA can be used to study cost efficiency.  

DEA can incorporate multiple outputs and inputs; in fact, inputs and outputs can be defined 

in a very general manner without getting into problems of aggregation.  If more of a measure 

is desirable it can be modeled as output and if less of something is better, it can be interpreted 

as input.  This is an attractive feature as in many service industries such as banking; it is 

difficult to determine whether deposits, for example, are an output or an input, which 

produce loans.  DEA can also make use of proxy outputs including output combinations that 

would not be used with other efficiency measures. 

 

DEA provides a scalar measure of relative efficiency by comparing the efficiency achieved 

by a decision-making unit (DMU) with the efficiency obtained by similar (or peer) DMUs.  

The method allows us to obtain a well-defined relation between outputs and inputs. In the 

case of a single output this relation corresponds to a production function in which the output 

is maximal for the indicated inputs.  In the more general case of multiple outputs this relation 

can be defined as an efficient production possibility surface or frontier.  As this production 

possibility surface or frontier is derived from empirical observations, it measures the relative 

efficiency of DMUs that can be obtained with the existing technology or management 

strategy.  Technological or managerial change can be evaluated by considering each set of 

values for different time periods for the same DMU as separate entities (each set of values as 

a different DMU).  If there is a significant change in technology or management strategies 

this will be reflected in a change in the production possibility surface. 

 

To summarize:  DEA is a non-parametric technique that can be used to model production and 

efficiency of non-profit organizations.  Inputs and outputs can be defined in a very general 

manner in that if more of something is better then it is an output and if less of something is 

better it is an input.  DEA can handle multiple inputs and outputs and can be used to study 
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cost or productive efficiency of a firm or a division or department within a firm.  It basically 

compares a DMU to (efficient) peers thus it is somewhat similar to benchmarking.  It can 

also predict how inputs and outputs should be adjusted for an inefficient unit to become 

efficient.  Further, the efficiency scores can also be used in a second stage regression 

analysis, which allows for examining the impact of managerial variables on efficiency. 

 

DEA methods can also be used to construct distance functions, which can be used to 

construct the Malmquist index of productivity change.  This can then be decomposed into 

various components such as scale efficiency change and technical efficiency change. 

 

The Malmquist index of productivity change can be written as follows, where y represents 

outputs, x represents inputs, t indexes time periods and D(.) represents distance functions: 
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The above measure can also be expressed as: 
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In the above equation, the first term measures efficiency change and the second term (in 

square brackets) measures technical change.  Calculating the Malmquist index and its 

components requires the calculation of four distances: D x yt t t( , ) , D x yt t t  1 1 1( , ) , 

D x yt t t( , ) 1 1  and D x yt t t1( , ) .  This is accomplished by solving four (constant returns to 

scale) linear programming (DEA) problems, thus making use of the fact that output distance 

function is the inverse of the Farrell output oriented measure of technical efficiency.  For 

each firm k, D x yt t t( , )  can be computed as follows, as can D x yt t t  1 1 1( , )  by substituting 

t+1 for t: 
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Similarly, D x yt t t( , ) 1 1  can be computed as follows, as can D x yt t t1( , )  by interchanging 

t+1 and t: 
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Both the efficiency change and technical change measures in (16) can be decomposed 

further.  The output oriented measure of scale efficiency can be defined as the ratio of an 

output oriented distance function for a variable returns to scale technology to that for a 

constant returns to scale technology or: 

 S x y
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Calculating this requires solving the LP in (17) with the following additional restriction for 

variable returns to scale: 
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Thus, the efficiency change component in (16) can be decomposed into scale efficiency 

change and pure efficiency change as: 
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The technical change component in (16) can also be decomposed as the product of the 

magnitude of technical change and (input and output) bias, where magnitude is defined as 

follows: 
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To summarize: the Malmquist index of productivity change can be represented as the product 

of efficiency change and technical change.  Efficiency change can be further decomposed as 

the product of scale efficiency change and pure efficiency change, whereas technical change 

can be decomposed as the product of the change in the magnitude of technical change and 

bias. 

 

DEA offers advantages because it can employ physical measures of inputs and outputs but it 

also has some disadvantages. It is sensitive to outliers and there will invariably be more than 

'most efficient' firm. This is equivalent to having more than one benchmark. Another major 

criticisms of non-parametric methods of measuring productivity such as those described 

above is that one has no sense of statistical significance.  Increasingly this is becoming less 

of a problem, since bootstrap techniques can be used to derive confidence intervals for both 

DEA efficiency scores and the Malmquist index of productivity change. 

 



_________________________________________________________________________________ 

Subject to exemption 5, deliberative process privilege.  This working material has not been approved 

by the Administrator, nor is it official policy of the FAA. 

31 

SUMMARY AND CONCLUSIONS 

 

The numerous statistical cost equations estimated by GRA attempt to identify cost drivers, 

service quality and productivity. Our approach is designed to complement this work and in 

some sense provide a check.  For example, where GRA's estimate would provide a measure 

of average variable cost of a particular activity. Our approach would provide a measure of 

marginal costs.  These two values serve as a check on the robustness of the cost estimates and 

to some degree on measures of returns to scale.5 

 

When it comes to strategy or to issues such as what can management do? one has to be very 

clear about what management can control and what it cannot.  ATC is affected by technology 

issues, capital investment and by regulatory issues – these aspects are ‘exogenous’ in the 

sense that they are external but they affect ATC.  Exogenous factors should not be used to 

study efficiency or performance of ATC controllers, because they represent constraints 

within which ATC controllers must operate. However, they also provide information for 

senior management and policy makers at the FAA as to how future investments might be 

made to ease such constraints. 

 

In order to perform a sensible analysis we need to identify these variables.  For example if an 

ATC controller cannot really force aircraft to stick to a particular route then any errors due to 

separation violations may affect the productivity of the ATC controller, but separation errors 

cannot be used as an endogenous variable or a variable under the control of management.  

Similarly when it comes to performance measurement, the number of errors should be held 

constant – so given the extent/number of separation errors (which are outside the control of 

ATC controllers) how have they performed? This is the correct question. 

 

DEA may be used as a benchmarking tool for SDPs, but we have to be very careful in the 

specification of what is discretionary and what is not.  It is also critical to check the 

                                                 
5 The cost elasticity can be defined as the ratio of marginal to average cost. A cost elasticity <1 implies 

increasing returns to scale. 



_________________________________________________________________________________ 

Subject to exemption 5, deliberative process privilege.  This working material has not been approved 

by the Administrator, nor is it official policy of the FAA. 

32 

distribution of all variables, as DEA is highly susceptible to outliers. The Malmquist index 

can be used to study performance over time.  

 

Any subsequent analysis must carefully identify key variables such as institutional and 

regulatory technology. Institutional technology would reflect the sets of rules that govern 

input and output ratios in operations and are established by the FAA. Such rules as numbers 

of controllers for a given traffic level affect costs but do not reflect a flexible production 

structure. Regulatory technology would reflect rules concerning separations of aircraft, 

aircraft spacing and operational rules in conditions of congestion. Such rules result in ceilings 

being imposed on the output of an ATC center. These are exogenous and must be controlled 

for in any model. 

 

Externalities between ATC centers must also be accounted for. This was a major theme of 

our work. Neither TFP nor DEA are able to handle such effects directly in their calculation. 

Indeed, one would expect the 'gross' measures of either TFP or DEA to include such 

externality effects and identification would require a second stage estimation such as a Tobit 

regression on a set of characteristic or exogenous variables to net out these influences.  

 

Perhaps the most important effort in the next step is to develop or construct a model or theory 

of ATC management. At present we have a set of operations and these operations reflect past 

decisions and investments.  But operations take place in a context of firm objectives, a 

production technology and a market setting. By having a model of the ATC plant or firm we 

would better be able to judge or assess the signs and significance of variable relationships.  

 

 

 

 


